Phantom hydrothermal vents in the deep sea

environmentmarine conservationmarine biologyoceanographyhydrothermal vents
Shells upon a black smoker in the Mid-Atlantic Ridge between 5°S and 11°S. (c) ROV Kiel 600, GEOMAR

Research explain how organisms move between hydrothermal vents Highly specialised communities form at the hydrothermal vents in the deep sea. These communities are often hundreds or thousands of kilometres apart, causing marine biologists to wonder how larvae from the same species travel from one location to another. Using oceanographic and genetic analysis of shells of the genus Bathymodiolus, an international team of scientists led by GEOMAR Helmholtz Centre for Ocean Research Kiel have proven that there are as-yet undiscovered hydrothermal vents in-between the vents that serve as intermediate points. Large flower-like tubeworms, foot-long clams, armoured worms and ghostly-looking fish are just some of the creatures that make up the unique diversity of the hot hydrothermal vents (also called black smokers) in the deep sea. The development of such ecosystems is linked to tectonic and volcanic activity at the ocean floor. Hydrothermal vents are often isolated and far from one another. On the Mid-Atlantic Ridge, they are several hundred - even thousands - of kilometres apart. Many of the animals that live there remain underground once they reach adulthood. It is only during their larval stage that they are able to move from one location to another. How the exchange between different populations is facilitated has remained a mystery amongst scientists, since the study of larval distribution in the ocean is virtually impossible. This study, published in the international journal Current Biology, sheds some light on this phenomenon. " To detect the exchange between different hydrothermal vents at the Mid-Atlantic Ridge, we used a combination of high-resolution genetic analysis and computer simulations of larval distribution. As an example, we used the shells of the genus Bathymodiolus, as these animals are a keystone species in hydrothermal ecosystems, " said GEOMAR's Dr Corinna Breusing in German. She is the author of the study. For the participating oceanographers, the study was a first, as there was no data on flow patterns in the deep sea. Prof Dr Arne Biastoch from GEOMAR explained that they had used and adapted several ocean models before getting a realistic simulation of the larvae's drifting patterns. The modelling data was subsequently supported by molecular analysis — a combination that was seldom used, according to Dr Biastoch. The team then developed molecular markers for the analysis of the relationships themselves, as the genetic data for Bathymodiolus had not been developed yet. In doing so, the researchers discovered that although an exchange between the different populations does exist, it does not occur within a single generation, as the larvae normally would not drift more than 150 kilometres. GEOMAR's Prof Dr Thorsten Reusch said there must be undiscovered hydrothermal vents or habitats of a similar nature in the Mid-Atlantic Ridge that served as a kind of "stop", facilitating the exchange between different communities. He added that they referred to such "stops" as phantom stepping stones, as they do not know their location or how they were designed. The results of the study are relevant because hydrothermal ecosystems contain sulphide deposits, known to be potential mineral sources for the future. Dr Breusing said that if the sulphide deposits have been degraded, appropriate protection zones must be set up, taking into account the migration routes of the unique inhabitants of the hot springs. He hopes that their work can lead to further research on other organisms and geographic regions, so that the information collected can be used to develop effective protection efforts. More information:  www.geomar.de See also: Hydrothermal Vent Discovered In Gulf Of California Exploring hydrothermal vents at Azores archipelago Researchers compile 3-D map of hydrothermal field in Pacific

The mussel species Bathymodiolus azoricus. (c) Jan Steffen, GEOMAR
Dr Corinna Breuning, author of the study, in the climate chamber with Bathymodiolus azoricus. (c) Jan Steffen, GEOMAR

المزيد

marlatomorug
What is the Role of Artificial Reefs in Marine Conservation?

ماذا هو دور الشعاب الاصطناعية في الحفاظ على البيئة البحرية؟

هل تتساءل كيف تساعد الشعاب الاصطناعية في حماية المحيط؟ تعرف ماذا هي الشعاب الاصطناعية، وكيف تدعم الحياة البحرية، وكيف يمكن للغواصين المشاركة فيها.

منذ 1 يوم
marla_tomorug
How to Find (and Choose) the Right Diving Community for You

كيفية العثور على (واختيار) مجتمع الغوص المناسب لك

هل تبحث عن مجتمع غوص للانضمام إليه؟ تعرف على كيفية العثور على نوادي الغوص والمراكز والمجموعات المناسبة عبر الإنترنت لبناء المهارات والثقة والتواصل.

منذ3 أيام
predrag_vuckovic
Cold, Murky, Boring? Why Freshwater Diving Hooks You for Life

بارد، معتم، ممل؟ لماذا الغوص في المياه العذبة يجذبك مدى الحياة

بارد، مظلم، ممل؟ يتحدى الغوص في المياه العذبة الافتراضات - وغالبًا ما يصبح أساسًا لمدى الحياة من الغوص الواثق والفضولي.

منذ5 أيام
@Stingray-Japan
72 Meters Down: Why Stingray Japan Returned to the Scandinavia

72 مترًا لأسفل: لماذا عادت ستينغراي اليابان إلى الدول الاسكندنافية

على عمق 72 مترًا تحت سطح البحر، تقوم ستينغراي اليابان بمسح حطام سفينة اسكندنافيا - مما يوفر الدقة الفنية والخبرة في استكشاف المياه العميقة.

منذ7 أيام
danny-de-groot-unsplash
Why Freediving Gili Trawangan Is So Popular (And Why it Works)

لماذا يحظى برنامج الغوص الحر في جيلي تراوانجان بشعبية كبيرة (ولماذا ينجح)

هل تتساءل لماذا يحظى الغوص الحر في جيلي تراوانجان بشعبية كبيرة؟ اكتشف سبب عودة ممارسي الغوص الحر عاماً بعد عام لهدوء مياهها وعمقها على الشاطئ ومشهد التدريب.

منذ9 أيام