Scientists study the ice algae-produced carbon in the Arctic

environmentarcticmarine researchice algaefood web
Arctic conch Clione limacina. (c) Hauke Flores

"Ice Algae" play a large role in the Arctic food cycle Algae living in and under the sea ice play a much larger role in the Arctic food web than previously assumed. Biologists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research have shown that organisms that live directly under the ice are not the only ones thriving on carbon produced by so-called ice algae. Their results have been published online in the Limnology & Oceanography journal. Even species that mostly live at greater depths depend on the carbon from these algae. Considering this, the decline of the Arctic sea ice may have far-reaching consequences for the food web of the Arctic Ocean. In their research, the research team examined copepods, amphipods, crustaceans and sea angels from the central Arctic Ocean and their dependence on ice algae. Many species of zooplankton are mobile and spend their lives underwater at depths of up to 1,000 metres and more. There are also other species live on the underside of the sea ice. "We now know that ice algae play a much more important role for the pelagic food web than previously assumed. This finding also means that the decline of the ice could have a more profound impact on Arctic marine animals, including fish, seals and ultimately also polar bears, than hitherto suspected," said Doreen Kohlbach, lead author of the study. Using fatty acids as biomarkers, she established the close relationship between zooplankton and ice algae. Because they are passed on unchanged in the food chain, the fatty acids in ice algae can determine whether an animal has ingested carbon from ice algae via food. Kohlbach also conducted an isotope analysis of the biomarkers to measure the proportion of ice algae in the diet. She took advantage of the fact that ice algae inherently have a higher proportion of heavy carbon isotopes incorporated in their cells than the algae that float freely in the water. On the basis of the ratio of heavy to light carbon isotopes in the biomarkers, the exact proportion of carbon derived from ice algae in the organisms can be determined. The findings of the research indicated that ice-associated animals obtained 60 to 90 percent of their carbon from the ice. For those animals living at greater depths, the percentages dropped to between 20 and 50, which was much higher than expected. "Personally, I was most surprised by the percentage in the predatory amphipod Themisto libellula, which lives in the open waters and is not known to hunt under the surface of the ice. We now know that it obtains up to 45 percent of its carbon from ice algae, which had been eaten by its prey," said AWI sea ice ecologist and co-author Dr Hauke Flores. According to her, they also discovered that pelagic copepods also obtained up to 50 percent from the algae, despite the previous assumption that they fed mainly on algae from the water column. These figures showed that ice algae mainly grows in spring when little light penetrates the ice, which is still thick at that time of the year. The samples, however, were taken in the summer – at this time, the percentage of ice algae carbon in the food chain was still relatively high. The scientists now wonder how the figures would be like at other times of the year, as well as whether more distinction can be made between the various ice algae and whether perhaps there is a key alga. This study is the first to quantify the flow of ice algae-produced carbon in the food web in the central Arctic during summer. Such values can be used by AWI biologists to predict the sea ice decline for the Arctic ecosystem in their model calculations. Link to study:  http://onlinelibrary.wiley.com/doi/10.1002/lno.10351/full

Arctic amphipod Themisto libellula (c) Angelina Kraft
Ice algae growing in a meltwater pond on Arctic sea ice. (c) Mar Fernandez

marlatomorug
What is the Role of Artificial Reefs in Marine Conservation?

해양 보존에 있어 인공 암초의 역할은 무엇일까요?

인공 암초가 어떻게 해양 보호에 도움이 되는지 궁금하신가요? 인공 암초란 무엇이며, 해양 생물을 어떻게 보호하는지, 그리고 다이버들이 어떻게 참여할 수 있는지 알아보세요.

1일 전
marla_tomorug
How to Find (and Choose) the Right Diving Community for You

나에게 맞는 다이빙 커뮤니티를 찾고 선택하는 방법

함께 다이빙을 즐길 수 있는 커뮤니티를 찾고 계신가요? 실력 향상, 자신감 제고, 그리고 사람들과의 교류를 위해 적합한 다이빙 클럽, 센터, 그리고 온라인 그룹을 찾는 방법을 알아보세요.

3 일 전
predrag_vuckovic
Cold, Murky, Boring? Why Freshwater Diving Hooks You for Life

차갑고, 탁하고, 지루하다고요? 민물 다이빙에 평생 빠져들게 되는 이유

차갑고, 탁하고, 지루하다고요? 민물 다이빙은 이러한 고정관념을 깨뜨리고, 종종 평생 자신감 넘치고 호기심 가득한 다이빙의 토대를 마련해 줍니다.

5 일 전
@Stingray-Japan
72 Meters Down: Why Stingray Japan Returned to the Scandinavia

72미터 아래: 스팅레이 재팬이 스칸디나비아로 돌아온 이유

스팅레이 재팬은 수심 72미터 아래에서 스칸디나비아호 난파선을 조사하며 심해 탐사에 기술적 정밀도와 전문성을 제공하고 있습니다.

7 일 전
danny-de-groot-unsplash
Why Freediving Gili Trawangan Is So Popular (And Why it Works)

길리 트라왕안에서 프리다이빙이 그토록 인기 있는 이유 (그리고 효과적인 이유)

길리 트라왕안에서의 프리다이빙이 왜 그렇게 인기 있는지 궁금하신가요? 잔잔한 바다, 해안가 가까운 수심, 그리고 훌륭한 훈련 환경 덕분에 프리다이버들이 매년 이곳을 찾는 이유를 알아보세요.

9 일 전