How do marine mammals avoid the diving disease?

environmentdecompression sicknessmarine mammalslung architecturesonar noise
Deep diving whales and other marine mammals such as these Pacific white-headed dolphins can experience the same painful and potentially life-threatening decompression sickness that plagues divers who emerge too fast. Photo: © Lance Wills, Woods Hole Oceanographic Institution

The lung architecture of deep-diving marine mammals is divided into two parts Deep-diving whales and other marine mammals, as well as divers who emerge too quickly, can get the decompression sickness. A new study is now hypothesizing how marine mammals avoid decompression sickness. Under stress, the researchers say, these mechanisms could fail. This could explain the strandings of whales as a result of sonar noise under water. The key is the unusual lung architecture of whales, dolphins and bottlenose dolphins (and possibly other breathable vertebrates) that show two different lung regions under pressure. Researchers from the Woods Hole Oceanographic Institution (WHOI) and the Fundacion Oceanografic in Spain recently published their study in the journal Proceedings of the Royal Society B. "As some marine mammals and turtles can dive so deeply and for so long, scientists have been confused for a long time," says Michael Moore, director of the Marine Mammal Center at the WHOI and co-author of the study. When air-breathing mammals plunge into great depths, their lungs compress. At the same time, their alveoli - tiny bags at the end of the respiratory tract collapse where the gas exchange takes place. Nitrogen bubbles form in the bloodstream and in the tissues of the animals when they emerge. When they rise slowly, the nitrogen can return to the lungs and be exhaled. But if they rise too fast, the nitrogen bubbles do not have time to diffuse back into the lungs. With lower pressure at shallower depths, the nitrogen bubbles expand in the bloodstream and tissues, causing pain and damage. The breast structure of marine mammals compresses their lungs. Scientists have believed that this passive compression is the main adaptation of marine mammals to avoid the absorption of excessive nitrogen at depth. In their study, the researchers took CT scans of a dead dolphin, a seal and a domestic pig, which were pressurized in a hyperbaric chamber. The team was able to see how the lung architecture of marine mammals creates two lung regions: one air-filled and one collapsed. The researchers believe that the blood flows mainly through the collapsed region of the lungs. This results in a so-called ventilation-perfusion mismatch in which oxygen and carbon dioxide are taken up by the bloodstream of the animal while nitrogen exchange is minimized or prevented. This is possible because each gas has a different solubility in the blood. The domestic pig examined for comparison did not show this structural adjustment. This mechanism would protect whales and dolphins from excessive nitrogen uptake, thereby minimizing the risk of decompression sickness, the researchers said. "Excessive stress as it may occur during exposure to man-made sound can cause the system to fail and blood to flow into the air-filled regions, which would improve gas exchange and increase nitrogen in the blood and tissues when pressure decreases during ascent, "explains Daniel García-Parraga of Fundacion Oceanografic, lead author of the study. Scientists believed that diving marine mammals were immune to the "diving disease". However, a 2002 Stranding incident associated with military sonar exercises showed that 14 whales that died off the Canary Islands after beaching had gas bubbles in their tissues - a sign of decompression sickness. More information: http://www.whoi.edu

In their study, the researchers took CT scans of a deceased dolphin, a seal and a domestic pig, which were pressurized in a hyperbaric chamber. Photo: © Michael Moore, Woods Hole Oceanographic Institution
The team was able to see how the marine mammalian lung architecture generates two lung regions: one air-filled and the other collapsed. The researchers believe that the blood flows mainly through the collapsed region of the lungs. The Earth Pig did not show this structura

wei-shang
How Can You Become a Mermaid? The Ultimate Guide

인어가 되는 방법: 완벽한 가이드

인어가 되려면 어떻게 해야 할까요? 오늘부터 인어 여정을 시작하는 데 필요한 모든 것을 알아보세요. 훈련, 기술, 안전, 그리고 최고의 인어 교육 과정까지!

오늘
mares
Best Gear for Scuba Diving Instructors: What the Pros Use

스쿠버 다이빙 강사를 위한 최고의 장비: 전문가들이 사용하는 장비

스쿠버 다이빙 강사를 위해 설계된 최고의 장비를 갖추세요. 일상적인 교육과 힘든 환경을 견딜 수 있도록 제작된 프로 수준의 BCD, 레귤레이터, 컴퓨터가 있습니다.

2 일 전
iStock-LUNAMARINA
8 Best Places to Go Freediving in Florida

플로리다에서 프리다이빙하기 가장 좋은 곳 8곳

플로리다의 프리다이빙은 비교할 수 없을 만큼 다채로운 경험을 선사합니다. 맑은 샘, 산호초, 동굴, 해안 생태계를 모두 가까이에서 만나보세요. 최고의 스팟을 여기에서 찾아보세요.

4 일 전
Shutterstock-leoks
Scuba Diving in Crete: Discover Greece's Stunning Blue Waters

크레타에서 스쿠버 다이빙: 그리스의 아름다운 푸른 바닷물을 만나보세요

햇살 가득한 동굴부터 제2차 세계 대전 난파선과 푸른 산호초까지, 크레타에서 스쿠버 다이빙을 즐겨보세요. 그리스의 수정처럼 맑고 푸른 바닷물과 숨겨진 경이로움을 탐험해 보세요.

6 일 전
fred_buyle
How to Start Freediving: Beginner's Guide to the Top Programs

프리다이빙을 시작하는 방법: 최고의 프로그램을 위한 초보자 가이드

자신감 있게 프리다이빙을 시작하는 방법을 알아보세요. 최고의 프로그램, 기대 효과, 그리고 나에게 맞는 프리다이빙 프로그램을 선택하는 방법을 알아보세요.

8 일 전