The path of plastic in the oceans

environmentmarine conservationoceanunderwater ecosystemmicroplastics
Biofilm formed by bacteria and microalgae on a plastic surface in water from the Kiel Fjord. The image was taken using confocal laser scanning microscopy, photo: © Jan Michels / Future Ocean

Microplastic connects to naturally occurring particles and forms aggregates Although vast amounts of plastic are drifting in the oceans and new microplastics are constantly being released into the oceans, the concentrations of microplastic in the surface layer are lower than expected. Researchers from the GEOMAR Helmholtz Center for Ocean Research Kiel, the Kiel Cluster of Excellence "Ocean of the Future" and the Helmholtz Center Geesthacht have now shown that microplastics in seawater interact with naturally occurring particles and form so-called aggregates. This aggregate formation could explain how microplastic sinks from the surface into deeper water layers. The oceans contain a large number of particles of biological origin, including, for example, living and dead plankton organisms and their faecal material. These so-called biogenic particles interact with each other and often form lumps that sink into deeper layers of water or are scientifically correct: aggregates. In addition to the natural particles, a large amount of plastic particles less than five millimetres in size, ie microplastics, has been in the oceans for some time. Although new microplastics are currently being released into the oceans and some plastic species are of relatively low density and therefore drift on the surface of the water, the concentrations on the surface of the oceans are often lower than expected. In addition, several microplastics have been found in deep-sea sediments in recent years. What happens to the microplastic in the surface layer? How does it get into great water depths? " Our hypothesis was that microplastics together with the biogenic particles form aggregates in the seawater, where it may then sink into deeper water layers, " explains Dr. Jan Michels, member of the Cluster of Excellence "Ocean of the Future" and lead author of the study, recently published in the international journal Proceedings of the Royal Society B. To test this hypothesis, researchers conducted laboratory experiments using 700 to 900 micron polystyrene beads. They compared the behaviour of the beads in the presence or absence of biogenic particles. The experiments provided a clear result: " The presence of biogenic particles was crucial for aggregate formation. While microplastic particles alone aggregated only slightly, together with biogenic particles they formed quite distinct and stable aggregates within a few days ", explains Prof. Dr. med. Anja Engel vom GEOMAR. After twelve days, on average, 73 percent of the microplastics were in aggregates. "In addition, we hypothesized that biofilms on the surface of the microplastic play a role in aggregate formation," explains Michels. Such biofilms are formed by microorganisms, especially bacteria and unicellular algae, and are relatively sticky. To investigate their impact on aggregation, comparative experiments were performed with purified plastic beads and those coated with a biofilm. "The microplastic covered by a biofilm together with biogenic particles formed first aggregates within a few hours, much earlier and faster than the microplastic purified at the beginning of the experiments," Michels describes. On average, 91 percent of the biofilm-coated microplastics were integrated into the aggregates after three days. If microplastics are covered with a biofilm and at the same time biogenic particles are present, stable aggregates of microplastics and biogenic particles form very quickly in the laboratory, " Michels sums up. In many regions of the oceans, the presence of numerous biogenic particles and biofilms on the microplastic is probably a typical situation. " Therefore, there are many indications that the aggregation processes that we have observed in our laboratory experiments also take place in the oceans and have a great influence on the transport and distribution of microplastics, " explains Prof. Dr. med. Kai Wirtz from the Helmholtz Center Geesthacht. Link to the study: http://dx.doi.org/10.1098/rspb.2018.1203

Dr. Jan Michels led the investigations, photo: © Jolan Kieschke / Future Ocean.
Photographs of typical aggregates made of plastic globules and biogenic particles that were generated during laboratory experiments, Photo: © Jan Michels / Future Ocean

jman78
Kids Scuba Trips: Tips for Finding Family-Friendly Options

어린이 스쿠버 여행: 가족 친화적인 옵션을 찾기 위한 팁

아이들과 함께 스쿠버 다이빙 여행을 계획 중이신가요? 최고의 가족 친화적인 다이빙 명소, 필수 장비 팁, 그리고 전 세계 공인 다이빙 센터를 선택하는 방법을 알아보세요.

오늘
predrag-vuckovic
How to Become a Freediving Instructor: A Six-Month Roadmap

프리다이빙 강사가 되는 방법: 6개월 로드맵

프리다이빙 강사가 되는 방법을 궁금해하시나요? 이 6개월 가이드는 초보자부터 프로까지 성장하는 데 필요한 교육 과정, 기술, 그리고 단계를 안내합니다.

2 일 전
wei-shang
How Can You Become a Mermaid? The Ultimate Guide

인어가 되는 방법: 완벽한 가이드

인어가 되려면 어떻게 해야 할까요? 오늘부터 인어 여정을 시작하는 데 필요한 모든 것을 알아보세요. 훈련, 기술, 안전, 그리고 최고의 인어 교육 과정까지!

4 일 전
mares
Best Gear for Scuba Diving Instructors: What the Pros Use

스쿠버 다이빙 강사를 위한 최고의 장비: 전문가들이 사용하는 장비

스쿠버 다이빙 강사를 위해 설계된 최고의 장비를 갖추세요. 일상적인 교육과 힘든 환경을 견딜 수 있도록 제작된 프로 수준의 BCD, 레귤레이터, 컴퓨터가 있습니다.

6 일 전
iStock-LUNAMARINA
8 Best Places to Go Freediving in Florida

플로리다에서 프리다이빙하기 가장 좋은 곳 8곳

플로리다의 프리다이빙은 비교할 수 없을 만큼 다채로운 경험을 선사합니다. 맑은 샘, 산호초, 동굴, 해안 생태계를 모두 가까이에서 만나보세요. 최고의 스팟을 여기에서 찾아보세요.

8 일 전