The path of plastic in the oceans

environmentmarine conservationoceanunderwater ecosystemmicroplastics
Biofilm formed by bacteria and microalgae on a plastic surface in water from the Kiel Fjord. The image was taken using confocal laser scanning microscopy, photo: © Jan Michels / Future Ocean

Microplastic connects to naturally occurring particles and forms aggregates Although vast amounts of plastic are drifting in the oceans and new microplastics are constantly being released into the oceans, the concentrations of microplastic in the surface layer are lower than expected. Researchers from the GEOMAR Helmholtz Center for Ocean Research Kiel, the Kiel Cluster of Excellence "Ocean of the Future" and the Helmholtz Center Geesthacht have now shown that microplastics in seawater interact with naturally occurring particles and form so-called aggregates. This aggregate formation could explain how microplastic sinks from the surface into deeper water layers. The oceans contain a large number of particles of biological origin, including, for example, living and dead plankton organisms and their faecal material. These so-called biogenic particles interact with each other and often form lumps that sink into deeper layers of water or are scientifically correct: aggregates. In addition to the natural particles, a large amount of plastic particles less than five millimetres in size, ie microplastics, has been in the oceans for some time. Although new microplastics are currently being released into the oceans and some plastic species are of relatively low density and therefore drift on the surface of the water, the concentrations on the surface of the oceans are often lower than expected. In addition, several microplastics have been found in deep-sea sediments in recent years. What happens to the microplastic in the surface layer? How does it get into great water depths? " Our hypothesis was that microplastics together with the biogenic particles form aggregates in the seawater, where it may then sink into deeper water layers, " explains Dr. Jan Michels, member of the Cluster of Excellence "Ocean of the Future" and lead author of the study, recently published in the international journal Proceedings of the Royal Society B. To test this hypothesis, researchers conducted laboratory experiments using 700 to 900 micron polystyrene beads. They compared the behaviour of the beads in the presence or absence of biogenic particles. The experiments provided a clear result: " The presence of biogenic particles was crucial for aggregate formation. While microplastic particles alone aggregated only slightly, together with biogenic particles they formed quite distinct and stable aggregates within a few days ", explains Prof. Dr. med. Anja Engel vom GEOMAR. After twelve days, on average, 73 percent of the microplastics were in aggregates. "In addition, we hypothesized that biofilms on the surface of the microplastic play a role in aggregate formation," explains Michels. Such biofilms are formed by microorganisms, especially bacteria and unicellular algae, and are relatively sticky. To investigate their impact on aggregation, comparative experiments were performed with purified plastic beads and those coated with a biofilm. "The microplastic covered by a biofilm together with biogenic particles formed first aggregates within a few hours, much earlier and faster than the microplastic purified at the beginning of the experiments," Michels describes. On average, 91 percent of the biofilm-coated microplastics were integrated into the aggregates after three days. If microplastics are covered with a biofilm and at the same time biogenic particles are present, stable aggregates of microplastics and biogenic particles form very quickly in the laboratory, " Michels sums up. In many regions of the oceans, the presence of numerous biogenic particles and biofilms on the microplastic is probably a typical situation. " Therefore, there are many indications that the aggregation processes that we have observed in our laboratory experiments also take place in the oceans and have a great influence on the transport and distribution of microplastics, " explains Prof. Dr. med. Kai Wirtz from the Helmholtz Center Geesthacht. Link to the study: http://dx.doi.org/10.1098/rspb.2018.1203

Dr. Jan Michels led the investigations, photo: © Jolan Kieschke / Future Ocean.
Photographs of typical aggregates made of plastic globules and biogenic particles that were generated during laboratory experiments, Photo: © Jan Michels / Future Ocean

もっと

nowak-mi
Scuba Diving BCDs Explained: How to Choose the Best Fit for You

スクーバダイビングのBCDを説明する:あなたに最適なものを選ぶには

スクーバダイビング用BCDの種類を知り、自分のダイビングスタイル、快適性、長期的なダイビング目標に最適なものを選ぶ方法を学ぶ。

今日
stock-art-wager
Freediving Kona: Discover Hawaii's 10 Best Dives

フリーダイビングコナ:ハワイでおすすめのダイビングスポット10選を紹介

コナはフリーダイバーにとって最も人気のある目的地のひとつである。コナでのフリーダイビングの楽しみ方、必見の場所を紹介する。

2日前
roatanmarineparkadammoore
Benefits of Marine Reserves: What Divers Should Know

海洋保護区の利点:ダイバーが知っておくべきこと

生物多様性の向上から気候変動への回復力まで、海洋保護区の利点と、海洋生態系を保護することがなぜこれまで以上に重要なのかを探る。

4日前
jman78
Kids Scuba Trips: Tips for Finding Family-Friendly Options

キッズ・スクーバ・トリップ:家族向けのオプションを見つけるためのヒント

キッズ・スクーバ・トリップを計画中?家族連れに最適なダイビングスポット、必要不可欠な器材のヒント、世界各地の認定ダイビングセンターの選び方を発見しよう。

6日前
predrag-vuckovic
How to Become a Freediving Instructor: A Six-Month Roadmap

フリーダイビングインストラクターになるには:6ヶ月のロードマップ

フリーダイビングのインストラクターになるにはどうしたらいいか、迷っている?この6ヶ月のガイドは、初心者からプロになるためのコース、スキル、ステップを紹介している。

8日前